By-Cycle

Bicycle News from the Maricopa County Department of Transportation

October 2000 Volume 1:10

Sun Valley Parkway Started

The chip seal project on the Sun Valley Parkway should start within the next week. It will take about 60 days to complete so we will probably hold our promised inspection road ride sometime in December or January. If you would like to add your name to the long list of interested cyclists wanting to participate, contact Reed Kempton at 602-506-1630. reedkempton@mail.maricopa.gov

Bike the Agua Fria Freeway

The Arizona Department of Transportation (ADOT) invites you to walk, ride, or roll along the Loop 101 before you can drive it.

ADOT, its contractors, and West Valley communities will hold a public celebration Saturday (October 14) from 8 a.m. until noon to mark the opening of the final six miles of the Agua Fria Freeway (Loop 101).

The freeway celebration will be held on the stretch of the Loop 101 between Camelback Road and Glendale Avenue. Parking at the event will be available via the northbound Loop 101 entrance ramp at Camelback Road.

The public is invited to bring bikes, rollerblades, wagons, and strollers to the freeway event.

ADOT says the Loop 101 is scheduled to open between Northern Avenue and I-10 by Monday (October 16), completing the entire Agua Fria Freeway between I-10 and I-17. www.dot.state.az.us

MCDOT Bicycle Web Page

www.mcdot.maricopa.gov/Bicycle/index.htm

Meetings

October 2000 Public Meeting Schedule

The public meeting schedule is subject to change. Please call to confirm dates and times. For on-line information go to: www.maricopa.gov/

10.6-7.2000

West Valley Rivers Trail Design Workshop

Location: Glendale Community College

6000 W. Olive Ave. Glendale, AZ

Contact: Dawn Coomer, 602-254-6300

dcoomer@mag.maricopa.gov Friday: 1:30 p.m. to 4:30 p.m. Saturday: 8:30 a.m. to 3:30 p.m. Sponsors: MAG and FCDMC

Please RSVP

10.18.2000

Dove Valley Road/62-68th St

Location: Cactus Shadows High School

5802 E. Dove Valley Road

Cave Cree, AZ

Leon Adair, 602-506-4684 Time: 5 p.m. -7 p.m.

10.25.2000

Tuthill/Jackrabbit Trail Corridor Study Germann Road to Indian School Road

Location: Liberty Elementary School

Science Lab 19818 W. MC85 Buckeye, AZ

Contact: Leo Trinidad, 602-506-2826 leotrinidad@mail.maricopa.gov

Time: 5 p.m. - 7 p.m.

Cycling Against Traffic By Reed Kempton

I had a neighbor once who complained about how dangerous it had become for him to bicycle to work. After hearing him say "I've been hit four times in the last month. and I ride on the sidewalk!" I spent the next half-hour explaining to him why riding on the sidewalk, especially facing traffic, was not as safe as he "I've been hit four times in the past

thought it was.

In this article, I month, and I ride on the sidewalk!" will explain why

bicycling against traffic, whether you're on a sidewalk or a path adjacent to a roadway, may not be as safe as you might think.

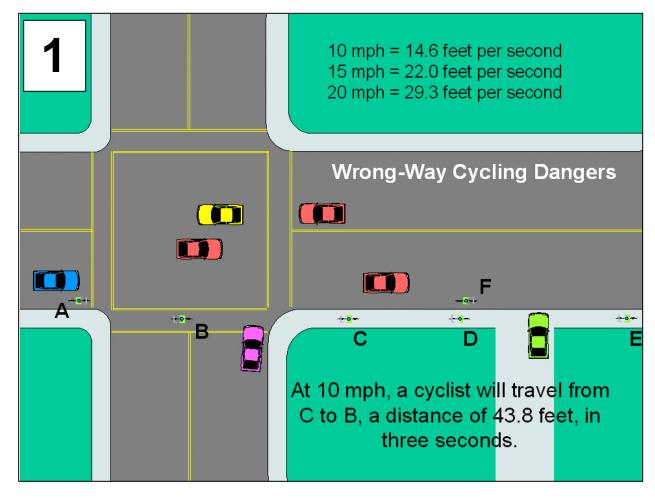
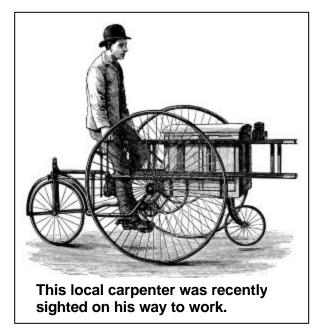

Automobile drivers are creatures of habit. Under the same circumstances, they tend to do the same things, in the same order, as though they had been practicing it for years. They have a basic set of rules that they follow and they expect other highway users to do the same. A collision is the result of someone not adhering to the rules.

Figure 1 represents a typical intersection where motorists are following the rules and behaving in a predictable manner. The cyclists at **A** and **F** are moving with the flow of traffic. The other cyclists are moving against traffic. At 10 mph (a speed well within the abilities of a beginner), the cyclist at **C** will arrive at **B** in three seconds. At 10

> mph, a cyclist will travel 14.6 feet per second. A cyclist moving at 20 mph (a

speed easily reached by a strong cyclist) will close the gap from **C** to **B** in 1.5 seconds.

The driver of the yellow car is waiting for the intersection to clear to safely make a left turn. The driver is looking towards the blue car and the cyclist at A. Since there is no reason to expect overtaking traffic to approach on the left, the driver will not turn his head and look over his left shoulder

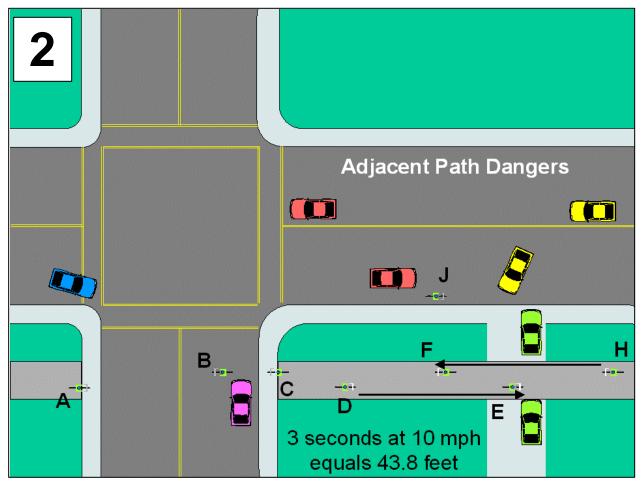


before turning. It will only take three seconds (at 10 mph) for the cyclist at **C** to move into the path of the turning yellow car at **B**. If the yellow car is able to stop without hitting the cyclist, it could be in the path of another vehicle trailing the blue car. The trailing vehicle would have expected the yellow car to clear the intersection and may not be able to avoid a collision.

The purple car is approaching the intersection preparing to make a right turn. The driver's eyes are focused on the blue car and the bicyclist at **A**. The driver will not expect traffic approaching on his right. Even if he looks right, and many drivers don't, the cyclist at **C** may be hidden by a sign, wall, or landscaping. At 10 mph, the cyclist at **C** will close the gap to the purple car in 1.5 seconds. The driver of the purple car will not see the cyclist until they are about to collide.

The driver of the green car is exiting a driveway. He will stop at the edge of the street, blocking the sidewalk. In many circumstances, the driver cannot get a clear view of approaching traffic from behind the sidewalk. Since cars approaching from the left are closer and more of a threat, the driver will usually look to his left first. The cars coming from his right are on the far side of the street and are not a concern unless a left turn is being contemplated. The red car and the cyclist at **F** are in the normal and expected positions on the roadway for approaching traffic. The position of the green car on the sidewalk does not impede the travel of the cyclist at **F**. The cyclist at **E**, approaching from the right traveling at 10 mph, will close the gap in 1.5 seconds. This cyclist is not in a normal and expected position on the roadway and may not be seen by the driver of the green car. This cyclist must stop since the green car is blocking the sidewalk. This is one of the most common types of car/bike collisions.

Figure 2 shows a 10' wide path adjacent to a street. The cyclists at **A**, **D**, **E**, and **J** are traveling in the same direction as traffic in

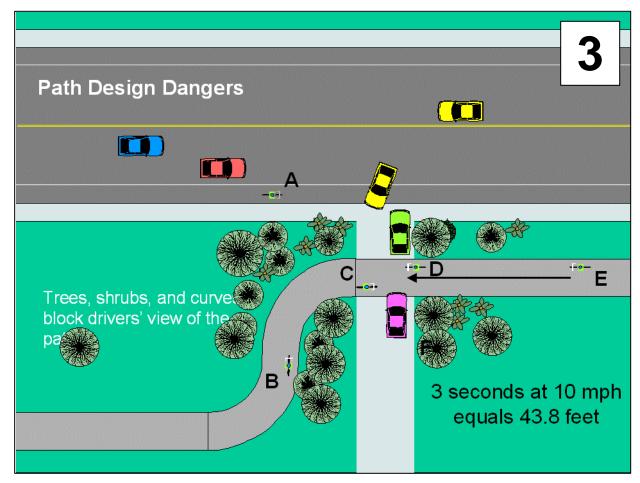


the right lane on the street. The cyclists at **B**, **C**, **F**, and **H** are traveling in a direction contrary to the flow of traffic on the street. It is important to note that they are moving in the proper position on the path.

The cyclist at **A** is about to cross the street. He may ride straight across the street like cyclist **B** or he may turn left, go to the intersection, and cross in the sidewalk. The distance from the path to the adjacent street and the volume of traffic on the street being crossed will affect this decision. The path is not visible to the blue car making a right turn. The blue car approaching on the street may not be visible to the cyclist at **A**. They may not see each other until they are both in the street.

The cyclist at **B** made the decision to ride directly across the street. At 10 mph, it took only three seconds to move from **F** to **C**, and only one second to move from **C** to **B**. The driver of the purple car may not see the cyclist on the path until **C** and might run over him before he reaches **B**.

The yellow car is shown in two positions. The first is preparing for a left turn and the second is during the turn. Prior to the turn, the driver of the yellow car is looking at the red car and the bicyclist at $\bf J$. They are both in the normal and expected positions on the road and are easily visible.


The yellow car may wait until both are clear before turning slowly into the driveway. The cyclist moving from **D** to **E** (it will only take three seconds at 10 mph) will be moving into the driver's field of vision as the driver completes the turn and approaches the path. The cyclist moving from **H** to **F** will not be seen until the driver is very close to the path. The green car stopped on the sidewalk will block the yellow car's view of the cyclist at position **H**. If the yellow car decides to accelerate and turns in front of the red car, he will be moving too fast to stop for any cyclists on the path. A collision with cyclists moving in either direction is possible.

The green car is shown in two positions. Just before crossing the path, the car may stop, wait for the cyclists to clear, and then move forward to block the sidewalk. It is quite possible, however, that the green car has gauged his speed to stop at the street and not at the path. He may not see the cyclists

coming in either direction until he is actually on the path. As he approaches the street, he will focus on position $\bf J$ and may not look to the right to see the cyclist at $\bf H$.

Figure 3 takes the adjacent path and makes it more complicated. In this scenario, we have added a curve in the path and vegetation along its edges. The cyclists are still moving at 10 mph.

The situation with the yellow car remains the same except that the vegetation now totally blocks his view of the path and cyclists moving from **E** to **D**. The yellow car will have a better view of the cyclist moving from **B** to **C**. However, if the cyclist cannot negotiate the tight curve, the two could meet head-on just left of the green car. If the driver of the purple car does everything right and stops prior to crossing the path, he still will not be able to see the cyclist moving from **B** to **C**. It will only take three seconds

to travel 43.8 feet and move into conflict with the purple car.

Another potential danger lies with bike to bike conflicts. The cyclists at **B** and **D** cannot see each other. The distance between them is closing and they will pass in the middle of the curve in two seconds. Cyclist **D** will have a tendency to cut the curve and will likely meet cyclist **B** face to face.

Connecting America: 1999 Report to the Nation

The Federal Highway Administration's annual report for 1999 includes a brief history of bicyclists efforts to pave roads, a quick summary of current activities related to bicycling and walking, interesting pictures of rumble strips, and roundabouts that may not be so bicycle friendly. Available from the FHWA Report Center 301-577-1421 or www.fhwa.dot.gov.

Heard at ProBike/ProWalk

"We have to make bicycling and walking easy, convenient, safe, accessible, comfortable... and normal."

Gene Conti

Assistant Secretary of Transportation USDOT

On your left!

The ProBike/ProWalk Conference in Philadelphia provided an opportunity to share ideas, projects, successes, and failures with over 500 bicycle planners, engineers, and advocates from nearly all the states. There were more than 60 workshops and 200 presentations. I'm still sifting through the data and will relate to you during the coming months any interesting items.

If you have a question about bicycling in Maricopa County, send a message to reedkempton@mail.maricopa.gov.

Reed